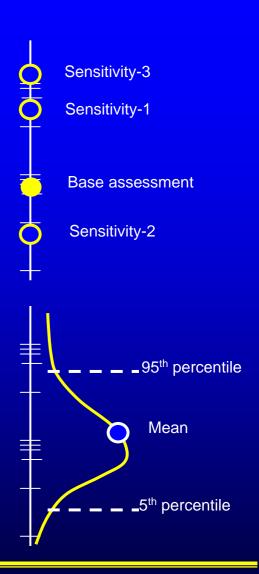

MODULE 10: Treatment of Uncertainties


OUTLINE

- Uncertainty versus Sensitivity
- Types of Uncertainty
- Methods for addressing uncertainty in a Level 2 PSA

Uncertainty vs Sensitivity

- Sensitivity & Uncertainty Analysis provide answers to different questions:
 - Sensitivity analysis: how would results change if different values were chosen for uncertain parameters?
 - Generates an different point estimate of risk measures
 - Uncertainty analysis: what level of confidence can be attributed to a risk measure?
 - * Generates a probability density function for risk measures

Uncertainty vs Sensitivity (2)

- Sensitivity studies are an important element of a Level 2 PSA.
 - Determine which parameters "control" accident progression and/or source terms.
 - Quantify the range of possible event outcomes, examples:
 - * How range of containment pressure increments might accompany RPV lower head failure?
 - * How much could the source term change if the containment failure pressure were 12 bar instead of 10 bar?
- Uncertainty analysis assigns probabilities to the spectrum of outcomes for individual events and combines them to evaluate their combined effect on plant response.

Sensitivity Analysis in Level 2 PSA (2)

	Hydrogen					
	Concentration in Containment?	Hydrogen Burn?	Detonation	Strong	Weak	None
		N.L. January				0.45
		No burn				0.45
	4 < Conc < 8%	0.9				
	0.5	Weak Deflagration			0.05	
	'	0.1				
		None				0.025
Accident	'	0.05				
Sequence XYZ	8 < Conc < 14%	Weak Deflagration			0.45	
	0.5	0.9				
	'	Strong Deflagation		0.025		
	· ·	0.05				
		Strong Deflagation		0		
	Conc > 14%	0.9				
	0	Detonation	0			
	1	0.1				
			0	0.025	0.5	0.475
		·				

Types of Uncertainty

- Probabilities developed in a Level 2 PSA carry uncertainty from two sources –
 - Stochastic or random behavior (aleatory uncertainty)
 - Lack of adequate knowledge (epistemic or "state-of-knowledge" uncertainty)
 - Epistemic uncertainties can be reduced over time, as more data are collected from research. Aleatory uncertainty cannot be reduced by further study.

Aleatory - examples

- Probability containment isolation valves fail to close on demand
- Probability a safety/relief valve sticks open after n-demands

Epistemic - examples

- Amount of hydrogen generated before RPV lower head failure
- Containment failure criteria
- Coolability of debris when submerged in water

Types of Uncertainty (2)

- Both types of uncertainty are treated probabilistically, although with different methods
 - Aleatory uncertainties: traditional data analysis
 - Calculation of event probabilities based on available data
 - Epistemic uncertainties: structured expert judgment
- Ideally, a Level 2 PSA model should separate the assessment of these two forms of uncertainty
 - A "bridge tree" addresses system issues (with aleatory uncertainty) not covered by Level 1 analysis
 - The CET addresses severe accident progression issues (with epistemic uncertainties)
 - Many studies blend the two together in a single analysis framework (i.e., no distinction between type of uncertainty)

Uncertainty Analysis in Level 2 PSA

- <u>All</u> Level 2 PSAs address uncertainties in severe accident behavior in the framework of the CET
 - Branches on the CET represent uncertain junctures in accident progression
 - Split fractions represent informed judgment about likely vs unlikely outcomes

	Hydrogen Concentration in Containment?	Hydrogen Burn?
		No burn
	4 < Conc < 8%	0.9
	0.85	Weak Deflagration 0.1
		0.1
		None
A = = : -l = = 4		0.05
Accident Sequence XYZ	8 < Conc < 14%	Weak Deflagration
	0.1	0.9
		Strong Deflagation
		0.05
		Strong Deflagation
	Conc > 14%	0.9
,	0.05	Detonation
		0.1

Uncertainty Analysis in Level 2 PSA (2)

- A complete uncertainty analysis involves a more complex treatment of split fractions in the CET:
 - Split fractions (probability) not constants; replace fixed values with probability density functions
 - Propagation of uncertainty across the CET events via Monte Carlo sampling (or equivalent)
- Only one published Level 2 PSA applied this method
 - **U.S. NRC: NUREG-1150 (1990)**
 - Required specially-developed (non-standard) tools for propagating uncertainty distributions through an event tree structure (EVNTRE, LHS, and several other codes)
 - Although the method represents the current state-of-the-art in Level 2 PSA, it has not been generally adopted for general applications

Uncertainty Analysis - Summary

- A quantitative evaluation of the effects of major uncertainties is an important element of contemporary Level 2 PSA
 - Recommended in Regulatory Review Guidelines developed by IAEA
 [IAEA-TECDOC-1229]
- Detailed, systematic sensitivity studies are generally an acceptable surrogate for true uncertainty analysis
 - Identify parameters/issues that control results
 - Identify parameters that dominate overall uncertainty
 - Determine whether uncertainty in specific parameters is important (do they impact results?)

